
Performance Analysis of the
Globus Toolkit Monitoring and Discovery Service, MDS2

Xuehai Zhang Jennifer M. Schopf
Department of Computer Science Mathematics and Computer Science Division

 University of Chicago Argonne National Laboratory
hai@cs.uchicago.edu jms@mcs.anl.gov

Abstract

Monitoring and information services form a key
component of a distributed system, or Grid. A
quantitative study of such services can aid in
understanding the performance limitations, advise in
the deployment of the monitoring system, and help
evaluate future development work. To this end, we
examined the performance of the Globus Toolkit®
Monitoring and Discovery Service (MDS2) by
instrumenting its main services using NetLogger. Our
study shows a strong advantage to caching or
prefetching the data, as well as the need to have
primary components at well-connected sites.

Keywords

Globus Toolkit Monitoring and Discovery Service,
Grid Information Services, Performance Analysis

1. Introduction

Grid platforms[3] depend on monitoring and
information services to support the discovery and
monitoring of the distributed resources for various
tasks. Indepth studies are needed to understand any
performance limitations in common settings.

In our previous work[13], we investigated the
behaviors of the Globus Toolkit Monitoring and
Discovery Service (MDS2)[2][9], the most common
monitoring system currently used for production Grids,
with the focus on analyzing the end-to-end
performance of a user request at a very coarse grain.
To better understand the unexplained behaviors we
saw in that study, in this work we exam MDS behavior
at a finer granularity by using NetLogger[11][12]
technologies to instrument both MDS2 server and
client codes and running experiments to evaluate the
effect of a large number of concurrent users accessing
the different services.

2. MDS2

The Monitoring and Discovery Service (MDS2)[2]
[9] is the Grid information service used in the Globus
Toolkit[6]. MDS2, built on top of the Lightweight
Directory Access Protocol (LDAP) (v3)[10], is used
primarily to address the resource selection problem,
namely, how a user identifies the host or set of hosts
on which to run an application. MDS2 provides a
uniform, flexible interface to data collected by lower-
level information providers. It has a decentralized
structure that allows it to scale, and it can handle static
or

Table 1: Definitions of the seven phases of an MDS2 query.

Phase Name Phase Definition Instrumentation
Location

Client-Connect Stage for MDS client program to open a connection to
MDS server Client side

Client-Bind Stage for MDS client to authenticate to MDS server Client side
Server-InitSearch Stage for MDS server performs search initialization Server side

Server-SearchIndex Stage for MDS server search indexes for entries Server side

Server-Invoking Stage for MDS server to invoke reported information
providers or GRIS to generate fresh data Server side

 1

Server-GenResult Stage for MDS server to build the results Server side
Client-EndConnect Stage for MDS client to receive results and disconnect Client side

dynamic data.

MDS2 has a hierarchical structure that consists of
three main components. A Grid Index Information
Service (GIIS) provides an aggregate directory of
lower-level data. A Grid Resource Information Service
(GRIS) runs on a resource and acts as a modular
content gateway for a resource. Information providers
(IPs) interface from any data collection service and
then talk to a GRIS. Each service registers with high-
level services using a soft-state protocol that allows
dynamic cleaning of dead resources. Each level also
has caching to minimize the transfer of unstale data
and lessen network overhead.

We use NetLogger to instrument both the MDS2
server and client codes. NetLogger[11][12] is a toolkit
developed by Lawrence Berkley National Laboratory
to monitor, under actual operating conditions, the
behavior of elements of a complex distributed system
in order to determine exactly where time is spent
within such a system and identify the performance
bottlenecks. With NetLogger, the components of a
distributed system can be modified to produce time-
stamped logs of “interesting” events at all the critical
points of the system, which are then correlated to allow
the characterization of the performance of all aspects
of the system in detail. To instrument an application to
produce event logs, the application developer inserts
calls to the NetLogger API at all the critical points in
the code, then links the application with the NetLogger
library. NetLogger is a lightweight tool and adds little
overhead to existing program when used carefully[11].

By adding NetLogger calls we broke the end-to-end
path of a MDS2 request into seven phases: (1) Client-
Connect, (2) Client-Bind, (3) Server-InitSearch, (4)
Server-SearchIndex, (5) Server-Invoking, (6) Server-
GenResult, and (7) Client-EndConnect, as shown in
Table 1. Phases 1, 2, and 7 constitute the MDS2 client
side components, and phases 3–6 constitute the server-

side components. A NetLogger view of the behavior of
a MDS v2.4 GRIS without data caching accessed by
10 concurrent users is given in Figure 1.

3. MDS2 Performance Results

In this section, we discuss the experiments results
and evaluations for MDS2. First we briefly talk about
experimental setup, and then we describe the metrics
we used in the experiments. Finally we present the
experiments results and analysis.

3.1. Experimental Setup

We ran our experiments between two sites: the
Lucky testbed at Argonne National Laboratory (ANL),
which provided the MDS2 server-side services, and a
testbed at the University of Chicago (UC), which
provided the client-side services.

The Lucky testbed includes seven Linux machines
with hostnames lucky{0,1,3,..,7}.mcs.anl (lucky2 was
unavailable during the experiments) and a shared file
system on a 100 Mbps LAN. Each machine is
equipped with two 1133 MHz Intel PIII CPUs (with a
512 KB cache per CPU) and 512 MB RAM. Lucky0
and lucky6 run Linux kernel 2.4.10 and the rest run
kernel 2.4.19.

The UC client-side hosts are a cluster of 20 Linux
machines with a shared file system on a 100 Mbps
LAN. Fifteen of them were equipped with a 1208 MHz
CPU and 256 MB RAM, while the rest had a slightly
slower CPU (but at least 756 MHz), also with 256 MB
RAM. Each machine runs Linux kernel 2.4.17 or a
higher version.

 2

Figure 1: The seven phases of an MDS2 query, as shown using NetLogger instrumentation.

The bandwidth between ANL and UC is around 55

Mbits per sec on average (as measured by Iperf[8]),
and the latency (Round-Trip Time) is approximately
2.3 msec on average.

We deployed MDS 2.2 and 2.4 on both sites and
used NetLogger v2.0.13 to instrument the server and
client codes of both versions. To synchronize the
clock, we ran NTP 4.1.2 at both the Lucky testbed and
UC client hosts.

In our experiments, we simulated up to 600 users
querying the MDS2 services simultaneously for 10
minutes, with a waiting period of one second between
receiving a request response and issuing the next
response, by running individual user processes
(scripts) on client machines. We selected 600 as the
upper bound since the average number of concurrent
users for MDS2 services in real world is much smaller.
We evenly distributed the simulated users to all twenty
machines to balance the load.

We used Ganglia[5], a cluster monitoring system
developed by UC Berkeley, to collect the performance
data at five-second intervals. The values reported in
each experiment are the average over all the values
recorded during a 10-minute time span. We performed
all the experiments in a LAN setting to ensure that the
performance of the service was affected primarily by
the service components and not by other external
factors.

3.2. Performance Metrics

The performance metrics we used in our work
include throughput, observed response time (ORT),
request processing time (RPT), load1, and CPU-load.

Throughput is defined as the average number of
requests (or queries) processed by a MDS2 service
component per second.

ORT, equivalent to the metric response time used in
our previous work[13], denotes the average amount of
time (in seconds) from the point a user sends out a
request till the user gets the response back. It is
calculated at the client side. RPT is defined as the
average time spent at the server side for a MDS2
service to handle a user request. ORT is always greater
than RPT, and their relationship can be represented by

ORT = TClient-Connect + TClient-Bind + RPT + TClient-EndConnect (1)

where TClient-Connect, TClient-Bind and TClient-EndConnect denote
the time spent on the Client-Connect phrase, the
Client-Bind phrase and the Client-EndConnect phase
respectively. As shown in Table 1, the server side
consists of four phases that timewise result in RPT.
Therefore, Equation 1 can be expanded to

ORT = TClient-Connect + TClient-Bind + RPT + TClient-EndConnect
RPT= TServer-InitSearch + TServer-SearchIndex + TServer-Invoking+
 TServer-GenResult (2)

 3

We also used two load metrics for the experiments,
a one-minute load average (load1) and CPU-load. The
metricLoad1 is the average number of processes in the
ready queue waiting to run over the last minute
measured by the Ganglia metric “load_one”. Usually
the system is overloaded if the load1 value is greater
than 3. CPU-load indicates the percentage of the CPU
cycles spent in user mode and system mode, which we
measured by averaging the sum of cpu_user and
cpu_system recorded by Ganglia. CPU-load may be
high while load1 is low if a machine is running a small
number of compute-intensive applications. CPU-load
may be low while load1 is high if the same machine is
trying to run a large number of applications that are
blocking on I/O.

0

20

40

60

80

100

120

140

160

180

200

1 10 50 100 200 300 400 500 600
No. of Users

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

c)
MDS2.2 GRIS (cache) MDS2.2 GRIS (no cache)
MDS2.4 GRIS (cache) MDS2.4 GRIS (no cache)

 Figure 2: MDS 2.2 and 2.4 GRIS Throughput vs.
No. of Concurrent Users

0

20

40

60

80

100

120

140

160

180

200

1 10 50 100 200 300 400 500 600
No. of Users

Ti
m

e
(s

ec
)

MDS2.4 GRIS ORT (cache) MDS2.4 GRIS RPT (cache)
MDS2.4 GRIS ORT (no cache) MDS2.4 GRIS RPT (no cache)

 Figure 3: MDS 2.4 GRIS ORT and RPT vs. No. of
Concurrent Users

 Figure 4: MDS 2.4 GRIS Host Load1 vs. No. of
Concurrent Users

0

10

20

30

40

50

60

70

80

90

C
P

U
_l

oa
d

(%
)

1 10 50 100 200 300 400 500 600
No. of Users

MDS2.4 GRIS (cache) MDS2.4 GRIS (no cache)

 Figure 5: MDS 2.4 GRIS Host CPU Load vs. No.
of Concurrent Users

0

0.5

1

1.5

2

2.5

3

3.5

4

1 10 50 100 200 300 400 500 600
No. of Users

Lo
ad

1

MDS2.4 GRIS (cache) MDS2.4 GRIS (no cache)

3.3. MDS2 Information Server Scalability

As the information server of MDS2, the GRIS can

be heavily queried by users. Therefore, in our first set
of experiments we evaluated its performance when it is
accessed by a large number of users concurrently.

For each MDS2 version, we ran a GRIS on lucky7,
which had ten information providers reporting to it.
We examined two different scenarios: the GRIS
always caching the data from the information providers
and the GRIS never caching the data. Our intention
was to understand the GRIS performances under two
extreme conditions, in order to help us estimate the
performance of the average case, which is somewhere
between these two. Each query requested all the data
elements in the GRIS directory, and this data was
generated by all the reported information providers.
The average size of requested data was less than 10
KB.

 4

Figures 2–7 show the performance results of v2.2
and v2.4 MDS2 GRISes, for two scenarios described
above. The end-to-end performance results are
presented in Figures 2–5 (Figures 2 compares v2.4
GRIS throughput performance with v2.2 GRIS while
the rest figures present v2.4 results only), while
Figures 6 and 7 show the NetLogger instrumentation
results about the performance of the seven phases
constituting the end-to-end path.

The results show that a GRIS, if configured with
data in cache, can achieve a much higher scalability
and end-to-end performance (throughput performance
in Figure 2 and ORT performance Figure 3,
respectively) than one without data caching, as one
would expect. Comparing the performance results of
the divided phases of end-to-end path for each scenario
(shown in Figures 6 and 7), we found that the RPT
occupies more than 90% of the ORT when a GRIS
doesn’t cache data. The much longer delay in the
Server-Invoking phase is the source of the degraded

performance. Since Server-Invoking is the stage in
which a GRIS invokes the reported information
providers to get the data, we believe the delay is
caused by the fact that the cost to execute information
providers can be expensive. To make the delay even
worse, concurrent queries asking information from the
same information provider must compete with each
other, since a GRIS can only serve them serially.

0

0.5

1

1.5

2

2.5

3

1 10 50 100 200 300 400 500 600
No. of Users

Ti
m

e
(s

ec
)

MDS2.4 ORT
Client-Connect
Client-Bind
Server-InitSearch
Server-SearchIndex
Server-Invoking
Sever-GenResult
Client-EndConnect

 (1) MDS v2.4 GRIS (data in cache)

0

0.5

1

1.5

2

2.5

3

3.5

1 10 50 100 200 300 400 500 600
No. of Users

Ti
m

e
(s

ec
)

MDS2.2 ORT
Client-Connect
Client-Bind
Server-InitSearch
Server-SearchIndex
Server-Invoking
Sever-GenResult
Client-EndConnect

 (2) MDS v2.2 GRIS (data in cache)

Figure 6: MDS2 GRIS (data in cache) Phases Performance vs. No. of Concurrent Users

0

20

40

60

80

100

120

140

160

180

200

220

1 10 50 100 200 300 400 500No. of Users

Ti
m

e
(s

ec
)

MDS2.4 ORT
Client-Connect
Client-Bind
Server-InitSearch
Server-SearchIndex
Server-Invoking
Sever-GenResult
Client-EndConnect

 (1) MDS v2.4 GRIS (data not in cache)

0

20

40

60

80

100

120

140

160

180

200

1 10 50 100 200 300 400 500No. of Users

Ti
m

e
(s

ec
)

MDS2.2 ORT
Client-Connect
Client-Bind
Server-InitSearch
Server-SearchIndex
Server-Invoking
Sever-GenResult
Client-EndConnect

(1) MDS v2.2 GRIS (data not in cache)

Figure 7: MDS2 GRIS (data not in cache) Phases Performance vs. No. of Concurrent Users

For the GRIS with data in cache, the ORT did not
exceed 3 seconds, compared with a maximum ORT for
a GRIS without data caching of 190 seconds. The
reason is a GRIS can serve the concurrent queries with
data in its cache rather than invoking low-level
information providers, and all cached data can reside
in memory to further improve the efficiency. Figure 6
confirms the Server-Invoking phase, and the RPT is no
longer the source of performance bottleneck. However,
we observe that the throughput did not follow a
constantly increasing rate after the point of 200
concurrent users for both versions of GRIS (Figure 2).

 5

This effect is the result of the longer delay of the
Client-Connect time (Figure 6). Unlike the GRIS
without data in cache, the performance depends on the
Client-Connect time – the sum of Client-Connect time
and Client-EndConnect time is about 95% of ORT.
Many factors may attribute to the delay of Client-
Connect, for example, network limitations at the server
side, the operating system’s scheduling delay, or the
constraint of the LDAP protocol used by MDS2.

Generally, a GRIS experienced a higher load (load1
results in Figure 4 and CPU_load results in Figure 5)
with the increasing number of users no matter it caches
data or not for each version. This is because more
concurrent queries contest for CPU to acquire the
service of the GRIS. However, the machine hosting a
GRIS without data in cache presents a lower load than
hosting a GRIS that caches data, indicating that many
of the processes were blocked waiting for resources in
the former case.

From the performance results, we also observed
differences between v2.4 GRIS and v2.2 GRIS. Figure
7 shows v2.4 GRIS outperforms v2.2 GRIS in the
efficiency of processing requests. The reason for the
improved performance is that v2.4 GRIS spends less
time on the Server-SearchIndex phase than does v2.2
GRIS, especially with a large number of users. This is
likely due to better memory use in v2.4. We conclude
that the overhead for the MDS2 GRIS can be
substantially reduced by data caching since invoking
the information providers to serve each query can be
expensive We suggest that, in order to provide good
quality of service, a GRIS should always cache the
data that is static or is expensive to calculate or fetch.
Moreover, a GRIS should support fewer than a 100
users if it has to provide fresh data without data
caching for each query.

3.4. MDS2 Directory Server Scalability

The second functionality of MDS2 we tested was
the performance of GIIS as a directory server with the
number of concurrent users.

We ran each version of MDS2 GIIS on lucky1 with
a GRIS (containing information from 10 information
providers) on each of lucky3–7 registered to it. To
analyze only the directory functionality of the GIIS
and not its information serving capacity as an
aggregation server, we set the cachettl (cache element
time to live) parameter to a value larger than 600
seconds to make sure the data was always in the cache
during each round of the experiments. Each user
queries for all the data elements from the GIIS
directory. This means the average data size a query

expects is approximately five times bigger than that in
the GRIS experiments, about 50 KB.

Figures 8–12 show the performance results of v2.2
and v2.4 MDS2 GIISes with data in their caches. The
end-to-end performance results are presented in
Figures 8–11, while Figure 12 shows the phase
performance instrumented by NetLogger.

With data in cache, MDS2 GIIS scales well and
exhibits a high throughput and low ORT with respect
to the increasing number of users. These results are
due to the fact MDS2 GIIS is very efficient in
processing the queries at the server side (the RPT was
always smaller than 0.2 sec, shown in Figure 12) since
it does not need to communicate with all the registered,
lower-level GRIS to generate the fresh data. We can
expect the communication expense is nontrivial, since
GIIS and the registered GRIS run on different
machines.

The NetLogger instrumentation results shown in
Figure 12 also illustrate that the majority of ORT is
spent on the client side’s Client-Connect phase for
MDS2 GIIS. More concurrent users accessing the
same GIIS simply means each user will experience a
longer latency in building the connection to the GIIS
service on average. Since MDS2 GIIS and GRIS are
constructed on nearly the same underlying protocols,
we attribute the longer delay of Client-Connect time to
the same reason we gave to GRIS.

The performance difference of different versions of
MDS2 GIIS is also reflected in the results. The v2.4
GIIS shows a higher throughput (Figure 8) and lower
ORT (Figure 9) than does the v2.2 GIIS when they are
accessed by a same number of users. The probable
explanation is better use of memory.

 6

0

20

40

60

80

100

120

140

160

1 10 50 100 200 300 400 500 600No. of Users

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

c)
MDS2.2 GIIS (cache) MDS2.4 GIIS (cache)

 Figure 8: GIIS (data in cache) Throughput vs.
No. of Concurrent Users

0

1

2

3

4

5

6

1 10 50 100 200 300 400 500 600
No. of Users

Ti
m

e
(s

ec
)

MDS2.2 GIIS ORT (cache) MDS2.2 GIIS RPT (cache)
MDS2.4 GIIS ORT (cache) MDS2.4 GIIS RPT (cache)

Figure 9: GIIS (data in cache) ORT and RPT vs.
No. of Concurrent Users

0

0.5

1

1.5

2

2.5

1 10 50 100 200 300 400 500 600
No. of Users

Lo
ad

1

MDS2.2 GIIS (cache) MDS2.4 GIIS (cache)

Figure 10: GIIS (data in cache) Host Load1 vs.
No. of Concurrent Users

0

10

20

30

40

50

60

70

1 10 50 100 200 300 400 500 600
No. of Users

C
P

U
_l

oa
d

(%
) MDS2.2 GIIS (cache) MDS2.4 GIIS (cache)

Figure 11: GIIS (data in cache) CPU_load vs. No.
of Concurrent Users

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 50 100 200 300 400 500 600
No. of Users

Ti
m

e
(s

ec
)

MDS2.4 GIIS ORT (cache)
Client-Connect
Client-Bind
Server-InitSearch
Server-SearchIndex
Server-Invoking
Sever-GenResult
Client-EndConnect

 (1) MDS v2.4 GIIS (data in cache)

0

1

2

3

4

5

6

1 10 50 100 200 300 400 500 600
No. of Users

Ti
m

e
(s

ec
)

MDS2.2 GIIS ORT (cache)
Client-Connect
Client-Bind
Server-InitSearch
Server-SearchIndex
Server-Invoking
Sever-GenResult
Client-EndConnect

 (2) MDS v2.2 GIIS (data in cache)

Figure 12: MDS2 GIIS (data in cache) Phases Performance vs. No. of Concurrent Users

 7

 8

Though MDS2 GIIS with data in cache can be
treated similarly to a GRIS with data in cache, their
absolute performance is quite different. When accessed
by the same number of users, a GRIS is more efficient
in serving queries than is the same version of GIIS
because the GIIS has many more entries and the
searching takes longer.

From the above experiment we see that using the
MDS2 GIIS as a directory server with data caching is a
good choice. It can provide good quality of service if
serving fewer than 400 users concurrently. With a
larger number of users, however, one should duplicate
the GIIS in order to keep the quality of service.

4. Conclusion

In this paper, we have investigated the scalability
and performance of the Globus Toolkit MDS2. We
used NetLogger to instrument the MDS2 codes at both
the server side and client side, and we broke the end-
to-end path of a user query into seven phases to
diagnosis the performance bottlenecks. Our work
shows that, when accessed by a large number of
concurrent users, both MDS2 GRIS and GIIS present
good scalability and performance if they keep data in
cache. On the other hand, their performance degrades
dramatically without data caching. The NetLogger
instrumentation results show that a primary cause of
the poor performance is either invoking the reported
information provider or consulting the reported GRIS.
We also find that the primary components of Grid
middleware must be available at well-connected sites,
because of the high load seen in the experiments we
evaluated.

In our future work, we plan to do more experiments
to address other characteristics of MDS2 GRIS and
GIIS with NetLogger instrumentation, for example,
how the performance of a GRIS scales with the
amount of data it contains. We also plan to compare
the MDS2 performance with other Grid middleware in
the same category, such as R-GMA[1] and
Hawkeye[7].

Acknowledgments

We thank both John Mcgee and Ben Clifford at ISI, for
assistance with the MDS2; and both Brian Tierney and Dan
Gunter at LBNL, for assistance with NetLogger. We also
thank Scott Gose and Charles Bacon for assistance with the
testbed at Argonne. This work was supported in part by the
Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under
contract W-31-109-Eng-38.

References

[1] Cooke, A., A. Gray, L. Ma, W. Nutt, J. Magowan, P.
Taylor, R. Byrom, L. Field, S. Hicks, and J. Leake, M. Soni,
A. Wilson, R. Cordenonsi, L. Cornwall, A. Djaoui, S. Fisher,
N. Podhorszki, B. Coghlan, S. Kenny, and D. O’Callaghan,
“R-GMA: An Information Integration System for Grid
Monitoring”, In Proceedings of the 11th International
Conference on Cooperative Information Systems, 2003.

[2] Czajkowski, K., S. Fitzgerald, I. Foster, and C.
Kesselman, “Grid Information Services for Distributed
Resource Sharing”, In Proceedings 10th IEEE International
Symposium on High-Performance Distributed Computing
(HPDC-10), August 2001.

[3] Foster, I., and C. Kesselman, eds, The Grid: Blueprint for
a New Computing Infrastructure, 2nd edition, Morgan
Kaufmann, November 2003.

[4] Foster, I., C. Kesselman, G. Tsudik, and S. Tuecke, “A
Security Architecture for Computational Grids”, In
Proceedings of the 5th ACM Conference on Computer and
Communications Security Conference, 1998, pp. 83–92.

[5] Ganglia: http://ganglia.sourceforge.net.

[6] The Globus Alliance. http://www.globus.org.

[7] Hawkeye: http://www.cs.wisc.edu/condor/hawkeye.

[8] Iperf: http://dast.nlanr.net/Projects/Iperf.

[9] MDS2: http://www.globus.org/mds/mds2.

[10] OpenLdap: http://www.openldap.org/.

[11] Tierney, B., and D. Gunter, “NetLogger Methodology
for High Performance Distributed Systems Performance
Analysis”, In Proceedings of the 7th IEEE International
Symposium on High-Performance Distributed Computing
(HPDC-7), July 1998.

[12] Tierney, B., W. Johnston, B. Crowley, G. Hoo, C.
Brooks, and D. Gunter, “NetLogger: A Toolkit for
Distributed System Performance Tuning and Debugging”, In
Proceedings of the 8th IFIP/IEEE International Symposium
on Integrated Network Management, March 2003.

[13] Zhang, X., J. Freschl, and J. Schopf, “A Performance
Study of Monitoring and Information Services for
Distributed Systems”, In Proceedings of the 12th IEEE
International Symposium on High-Performance Distributed
Computing (HPDC-12), June 2003.

	Keywords
	1. Introduction
	2. MDS2
	3. MDS2 Performance Results
	3.1. Experimental Setup
	3.2. Performance Metrics
	3.3. MDS2 Information Server Scalability
	3.4. MDS2 Directory Server Scalability

	4. Conclusion
	Acknowledgments
	References

